Synthesis of 5-Formyl-2'-deoxyuridine and the α -Anomer (1)

Mathias P. Mertes and Mohammed T. Shipchandler

Department of Medicinal Chemistry, The University of Kansas

Sir:

The mechanism of the reductive methylation of 2'. deoxyuridine-5'-phosphate catalyzed by the enzyme thymidylate synthetase utilizes tetrahydrofolic acid as the cofactor (2). A model system for the study of this biotransformation is the 5-formyl analog IIb.

Ia, R = p-Toluyl, α-anomer Ib, R = p-Toluyl, β-anomer

IIa, R - H, α-anomer IIb, R - H, β-anomer

5-Formyluracil (3) (1 g.) was silylated by the method of Wittenburg (4) and condensed with 2-deoxy-3,5-di-O-p-toluyl-D-ribofuranosyl chloride (5) (2.2 g.) in dry acetonitrile (25 ml.) in the presence of molecular sieves (1 g.) (6). After stirring at 25° for two days under anhydrous conditions, the reaction mixture was filtered, evaporated, and the resulting yellow oil treated with dry ethanol (10 ml.) to remove the silyl groups. A partial separation of the anomers was achieved on a silica gel column (300 g.). Elution with chloroform provided 0.4 g. of the α -anomer (Ia), m.p. 188-189°, 0.26 g. of anomeric mixture and 0.17 g. of the β -anomer (Ib), m.p. 195-196° (total yield 31%) (7).

Transesterification of Ia in methanol-benzene catalyzed by sodium methoxide followed by neutralization with Dowex 50 provided the α -nucleoside (IIa) as light yellow hygroscopic crystals, m.p. 92-95° (from ethanol-ethyl acetate); uv (1 N hydrochloric acid), λ max 282 (ϵ , 13,000), 234 (ϵ , 9,400), λ min 250 (ϵ , 2,900); (water), λ max 281 (ϵ , 12,100), 232 (ϵ , 9,300), λ min 251 (ϵ , 3,100); (1 N potassium hydroxide), λ max 283 (ϵ , 9,100), 237 (ϵ , 10,700), λ min 260 m μ (ϵ , 5,800); [α] $_{\rm D}^{25}$ ° +23.4° (ϵ 1.40, water). The anomeric assignment is based on

nmr (deuterium oxide) analysis in which the 1' proton appeared as a quartet at 6.23 δ (JH2' α = 7, JH2' β = 2.5, W $_{1/2}$ = 10.5 Hz) (8a). A first order splitting pattern of the 2' protons was consistent with that reported by Lemieux (8b). By selective decoupling experiments, a *cis* relationship between the 1'H and the 3'H was established.

Transesterification of Ib yielded the corresponding β -nucleoside (IIb) (9) as tan yellow crystals, m.p. 175-175.5° (from ethanol); uv (1 N hydrochloric acid), λ max 281 (ϵ , 13,200), 232 (ϵ , 10,000), λ min 251 (ϵ , 3,100); (water), λ max 281 (ϵ , 13,400), 231 (ϵ , 10,400), λ min 250 (ϵ , 3,100); (1 N potassium hydroxide), λ max 282 (ϵ , 10,300), 238 (ϵ , 11,600), λ min 261 m μ (ϵ , 5,600); [α] $_{\mathbf{D}}^{25}$ ° +33.0° (c 1.13, water). In the nmr (deuterium oxide) the anomeric proton appeared as a triplet at 6.30 δ (J = 6.5, W $_{\frac{1}{2}}$ = 13 Hz) (8a); the spectrum of the remainder of the sugar protons resembled that of thymidine (8b).

REFERENCES

- (1) This work was supported by Grants CA 5639 and CA 10,739 from the National Cancer Institute of the National Institutes of Health, Maryland.
 - (2) M. Friedkin, Ann. Rev. Biochem., 32, 185 (1963).
- (3) R. Brossmer and D. Ziegler, Tetrahedron Letters, 5253 (1966).
 - (4) E. Wittenburg, Z. Chem., 4, 303 (1964).
- (5) C. C. Bhat, "Synthetic Procedures in Nucleic Acid Chemistry," Vol. 1, W. W. Zorbach and R. S. Tipson, Ed., J. Wiley and Sons, Inc., New York, N. Y., 1968, p. 521.
- (6) M. W. Winkley and R. K. Robins, J. Org. Chem., 34, 431 (1969).
- (7) Satisfactory elemental, ir and nmr analyses were obtained for I and II.
- (8a) M. J. Robins and R. K. Robins, J. Am. Chem. Soc., 87, 4934 (1965). (b) R. U. Lemieux, Can. J. Chem., 39, 116 (1961).
- (9) Compound IIb has been tentatively identified (chromatographic behavior and color reactions) as a product of platinum oxide oxidation of 5-hydroxymethyl-2'-deoxyuridine, R. E. Cline, R. M. Fink and K. Fink. J. Am. Chem. Soc., 81, 2521 (1959).

Received April 24, 1970

Lawrence, Kansas 66044